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Abstract. We state the pertinent definitions regarding some of the algebraic

categories.

1. Categories

The study of category theory helped structure mathematics during the latter
half of the twentieth century, in a manner similar to the way that mathematics was
rewritten using set theory in the first half of the twentieth century.

For our purposes, an object is a set together with some additional structure,
and a morphism is a structure preserving function between two objects. A category
consists of all of the objects of the same type, together with the morphisms between
objects of that type.

For example, consider sets which have an order relation on them. We could
consider the collection of such objects to be a category; the morphism would be
order-preserving (i.e. increasing) functions between the sets.

As another example, a metric space is a set in which any two points have a
distance between them. We could form the category of metric spaces by saying
that morphisms between metric spaces must be distance preserving functions.

An algebraic category is a category in which the objects admit one or more
binary operations, and the morphisms preserve these operations. In this document,
we briefly outline some of the main algebraic categories. Later we will study some
of these in more detail.

2. Magmas

The simplest algebraic category is a magma. This is a good place to start.

Definition 1. A magma (M, ∗) consists of a nonempty set M together with a
binary operation ∗ : M ×M →M .

Is is typical to say that M is a magma, where the reader assumes that M is
endowed with a binary operation.

We may say that the magma is commutative or associative, depending if the
binary operation is commutative or associative. The magma may or may not have
an identity or inverses. The key property of a magma is closure of the binary
operation.

Example 1. Let N = {0, 1, 2, 3, . . . } be the set of natural numbers. In some
contexts, it is more convenient to let the natural numbers start at 1, but for algebra,
it is usually better to let them start at 0. Then (N,+) and (N, ·) are magmas.
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Example 2. The set of three dimensional vectors over R, together with cross-
product, is the magma (R3,×). This magma is neither commutative nor associative.

Example 3. Let F(X) denote the set of all functions from X into itself. Then
composition is a binary operation on this set, and (F(X), ◦) is an associative magma.

Definition 2. Let (M, ∗) be a magma, and let N ⊂ M . We say that N is a
submagma of M if

(a) N is nonempty;
(b) a, b ∈ N implies a ∗ b ∈ N .

So, a nonempty N ⊂ M is a submagma if the binary operation of M is closed
on N . Indeed, N is a submagma if N is itself a magma with respect to the same
binary operation.

Example 4. The set of even integers greater than eleven is closed under multipli-
cation, so it is a submagma of (N, ·).

The set of three dimensional vectors with rational coefficients is closed under
cross product, so it is a submagma of (R3,×).

Definition 3. Let (M, ∗) and (N, •) be magmas. A magma homomorphism from
M to N is a function f : M → N with the property that, for every a, b ∈ M , we
have

f(a ∗ b) = f(a) • f(b).

Example 5. Let M = R denote the set of real numbers, and let ∗ = + be addition.
Then (M, ∗) = (R,+) is a magma.

Let N = R>0 = (0,∞) denote the set of positive real numbers, and let • = ·
denote multiplication. Then (N, •) = (R>0, ·) is a magma.

Define f : R→ R>0 by f(x) = ex. Then

f(x1 + x2) = ex1+x2 = ex1ex2 = f(x1) · f(x2),

so f is a magma homomorphism.
Define g : R>0 → R by g(y) = ln(y). Then

g(y1y2) = ln(y1y2) = ln(y1) + ln(y2) = g(y1) + g(y2).

Indeed, f is a bijective homomorphism, and its inverse g is also a homomorphism.
One sees that f sets up a correspondence between the magma structures of R and
R>0 which causes them to be virtually identical, other than the way the points are
labeled.

Definition 4. Let M and N be magmas. An isomorphism from M to N is a
bijective magma homomorphism. We say that M and N are isomorphic, and write
M ∼= N , if there exists a magma homomorphism from M to N .
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Proposition 1. Let (M, ∗) and (N, •) be magmas, and let f : M → N be a bijective
magma homomorphism. Let g : N → M be the inverse of f . Then g is a magma
homomorphism.

Proof. Let n1, n2 ∈ N ; we wish to show that g(n1 • n2) = g(n1) ∗ g(n2).
Since f is bijective, there exist unique m1,m2 ∈ M such that f(m1) = n1 and

f(m2) = n2. Then, since f is a homomorphism,

n1 • n2 = f(m1) • f(m2) = f(m1 ∗m2).

Now apply g to both sides of this equation; since g(f(m)) = m for all m ∈ M , we
get

g(n1 • n2) = g(f(m1 ∗m2)) = m1 ∗m2 = g(n1) ∗ g(n2).

This is what we wished to show. �

Proposition 2. Let (M, ∗), (N, •), and (O, ◦) be magmas, and let f : M → N
and g : N → O be a magma homomorphisms. Then g ◦ f : M → O is a magma
homomorphism. If f and g are isomorphisms, then so is g ◦ f .

Proof. Let h = g ◦ f , and let m1,m2 ∈M . Then

h(m1 ∗m2) = g(f(m1 ∗m2)) = g(f(m1) • f(m2)) =

g(f(m1)) ◦ g(f(m2)) = h(m1) ◦ h(m2),

which is what we were required to show.
The last sentence follows from the fact that the composition of bijective functions

is bijective. �

The next proposition indicates that isomorphism is an equivalence relation on
any collection of magmas.

Proposition 3. Let A, B, and C be magmas. Then

(1) A ∼= A;
(2) A ∼= B implies B ∼= A;
(3) A ∼= B and B ∼= C implies A ∼= C.

Proof. The identity map is an isomorphism, so A ∼= A.
The inverse of an isomorphism is an isomorphism, so if A ∼= B, then B ∼= A.
The composition of isomorphisms is an isomorphism, so if A ∼= B and B ∼= C,

then A ∼= C. �

3. Monoids

We are particularly interested in associative binary operations with an identity,
so we make that our next definition.

Definition 5. A monoid (M, ∗, e) consists of a nonempty set M together with a
binary operation ∗ : M ×M →M satisfying

(M1) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈M (∗ is associative);
(M2) there exists e ∈ M such that e ∗ a = a ∗ e = a for all a ∈ M (∗ has an

identity).

Example 6. The archetypical example of a monoid is (N,+, 0), where 0 ∈ N is the
additive identity.

Let M denote the set of positive natural numbers; then (M, ·, 1) is a monoid.
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Example 7. Let Mn(R) denote the set of n× n matrices over R. Then Mn(R) is
a monoid under the operation of matrix multiplication.

A submonoid of a monoid is a subset which is closed under the operation, and
which contains the same identity. A monoid homomorphism is a magma homo-
morphism between monoids which sends the identity of one to the identity of the
other.

4. Groups

The most studied algebraic object with one operator is a group, which is a monoid
in which each element has an inverse. For convenience, we will write generic groups
using multiplicative notation.

Definition 6. A group (G, ·, 1) consists of a nonempty set G together with a binary
operation · : G×G→ G satisfying

(G1) g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3 ∈ G (associativity);
(G2) there exists 1 ∈ G such that 1 · g = g · 1 = g for all g ∈ G (existence of an

identity);
(G3) for every g ∈ G there exists g−1 ∈ G such that gg−1 = g−1g = 1 (existence

of inverses).

We recall that the identity and inverses are unique. Since a group is associative,
parentheses are useless when writing operations with three or more elements. In
general, groups are not commutative; we have a special name for the case that they
are.

Definition 7. Let G be a group. We say the G is abelian if

(G4) g1g2 = g2g1 for all g1, g2 ∈ G (commutativity).

Obvious examples of groups include the integers, rationals, and reals under ad-
dition and the nonzero rationals and reals under multiplication. Other examples of
groups we wish to explore include the additive and multiplicative groups of inte-
gers modulo n, the symmetry groups, the matrix groups, and the power set groups.
Later, we will go more deeply into these examples the theory of groups. For now,
we simply define subgroups and homomorphisms, for comparison with the other
algebraic categories.

Definition 8. Let G be a group. A subgroup of G is a subset H ⊂ G satisfying

(S0) H is nonempty;
(S1) h1, h2 ∈ H implies h1h2 ∈ H;
(S2) h ∈ H implies h−1 ∈ H.

We may write H ≤ G to indicate that H is a subgroup of G.

These are exactly the conditions which ensure that H is itself a group obtained
by restricting the operation on G to H.

Definition 9. Let G and H be groups. A group homomorphism is a function
φ : G→ H such that

φ(g1g2) = φ(g1)φ(g2).

A group isomorphism is a bijective group homomorphism.
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5. Rings

The primary algebraic object with two operations is the ring. We take a ring to be
a set which is an abelian group under addition and a monoid under multiplication.
The operations are related by the distributive laws.

Definition 10. A ring (R,+, ·, 0, 1) is a set R together with a pair of binary
operations

+ : R×R→ R and · : R×R→ R

such that

(R1) a+ b = b+ a for every a, b ∈ R;
(R2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ R;
(R3) there exists 0 ∈ R such that a+ 0 = a for every a ∈ R;
(R4) for every a ∈ R there exists −a ∈ R such that a+ (−a) = 0;
(R5) (ab)c = a(bc) for every a, b, c ∈ R;
(R6) there exists 1 ∈ R such that a · 1 = 1 · a = a for every a ∈ R;
(R7) a(b+ c) = ab+ ac for every a, b, c ∈ R;
(R8) (a+ b)c = ac+ bc for every a, b, c ∈ R.

Note that multiplication is not assumed to be commutative; this is the reason
that both the left and right distributive laws are given. The reason for this is to
include an important class of rings, the matrix rings, under the standard definition.

Be aware that some authors give slightly different definitions of rings. In partic-
ular, it is not uncommon to leave out axiom (R6), the existence of a multiplicative
identity. For our purposes, it is more convenient to include this axiom.

Definition 11. Let R be a ring. We say that R is commutative if it satisfies the
additional axiom

(R9) ab = ba for every a, b ∈ R.

Examples of rings include the integers, the rationals, the reals, and the complex
numbers. These rings have many subrings of interest. Also of interest for us are
the rings of modular integers, the rings of square matrices, and the power set rings.
All of these, except the matrix rings, are commutative. Lastly, and in some ways
most importantly, we have the polynomials rings.

Definition 12. Let R be a ring. A subring of R is a subset S ⊂ R such that

(S0) 1 ∈ S;
(S1) a, b ∈ S ⇒ a+ b ∈ S;
(S2) a ∈ S ⇒ −a ∈ S;
(S3) a, b ∈ S ⇒ ab ∈ S.

If S is a subring of R, we write S ≤ R.

Definition 13. Let R and S be rings. A ring homomorphism from R to S is a
function φ : R→ S such that

(H0) φ(1R) = 1S ;
(H1) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R;
(H2) φ(ab) = φ(a)φ(b) for all a, b ∈ R.

A bijective ring homomorphism is called a ring isomorphism.
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6. Fields

Definition 14. A field is a commutative ring F satisfying the additional axiom

(R10) for every a ∈ F r {0} there exists a−1 ∈ F such that aa−1 = 1.

Our first examples of fields include the rationals, the reals, the complexes, and
the integers modulo p, where p is prime. There are many more, however, and the
finite ones are particularly interesting for computational mathematics (e.g. cryp-
tography). We will be particularly interested in rings of polynomials over a finite
field.

A subfield of a field is a subring which is closed under multiplicative inverses. A
field homomorphism of a field is simply a ring homomorphism whose domain is a
field. It is possible to prove that such a function sends inverses to inverses, and is
injective.

7. Domains

Domains play an important role in the theory of polynomial rings, so we include
their definition here.

Definition 15. Let R be a commutative ring and let a ∈ R.
We say that a is entire if ab = 0⇒ b = 0 for every b ∈ R.
We say that a is cancellable if ab = ac⇒ b = c for every b, c ∈ R.
We say that a is invertible if there exists an element a−1 ∈ R such that aa−1 = 1.

Problem 1. Let R be a commutative ring and let a ∈ R. Show that a is entire if
and only if a is cancellable.

Problem 2. Let R be a commutative ring and let a ∈ R. Show that if a is
invertible, then a is entire.

Definition 16. A domain is a commutative ring D in which every nonzero element
is entire.

Note that a field may be defined as a ring in which every nonzero element is
invertible.

Some authors allow for noncommutative domains, and called commutative do-
mains integral domains. We have no use for this, so the above definition is more
convenient.
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8. Vector Spaces

Definition 17. Let F be a field. A vector space over F consists of a set V , together
with two operations,

+ : V × V → V and · : F × V → V,

known as vector addition and scalar multiplication, satisfying, for all v, w, x ∈ V
and a ∈ F ,

(V1) v + w = w + v for all v, w ∈ V
(V2) v + (w + x) = (v + w) + x for all v, w, x ∈ V
(V3) there exists ~0 ∈ V such that v + 0 = v for all v ∈ V
(V4) for every v ∈ V there exists −v ∈ V such that v + (−v) = ~0
(V5) 1 · v = v for all v ∈ V , where 1 ∈ F
(V6) a(bv) = (ab)v for all a, b ∈ F and v ∈ V

A vector is a member of a vector space.

The motivating example of a vector space is the set Rn of all ordered n-tuples
of real numbers. We view these as vectors geometrically as directed line segments
which may be used to model physical motion. We generalize this to an arbitrary
field as follows.

Let F be any field, and let Fn denote the set of ordered n-tuples from F . Then
Fn is a vector space over F , with componentwise addition and scalar multiplication.

Definition 18. Let V be a vector space over a field F . A subspace of V is a subset
W ⊂ V satisfying

(S0) W is nonempty;
(S1) w1, w2 ∈W implies w1 + w2 ∈W ;
(S2) w ∈W and a ∈ F implies aw ∈W .

The notation W ≤ V means that W is a subspace of V .

Definition 19. Let V be a vector space over a field F , and let X ⊂ V .
A linear combination from X is a vector v ∈ V of the form

v =

n∑
i=1

aixi, where ai ∈ F and xi ∈ X.

The span of X is

spanX = {v ∈ V | v is a linear combination from X}.
If W = spanX, we say that X spans W .

Fact 1. Let V be a vector space over a field F . Let X ⊂ V and W = spanX.
Then W ≤ V .

Definition 20. Let V be a vector space over a field F , and let X ⊂ V .
We say that X is linearly independent if, for any x1, . . . , xn ∈ X and any

a1, . . . , an ∈ F ,
n∑

i=1

aixi = ~0 ⇒ a1 = a2 = · · · = an = 0.

We say that X is a basis of V if X is a linearly independent set of vectors which
spans V . The plural of basis is bases.
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Fact 2. Every vector space has a basis. Any two bases have the same cardinality.

Definition 21. Let V be a vector space over a field F .
The dimension of V is

dimV = |X|,
where X is any basis of V .

We say that V is finite dimensional if V has a finite basis. There are interesting
vector spaces which are finite dimensional, and others which are infinite dimen-
sional.

Note that Fn is a vector space of dimension n. The standard basis of Fn is
{e1, . . . , en}, where ei contains 1 in the ith component, and 0 is every other com-
ponent.

The morphisms in the category of vector spaces are called linear transformations.

Definition 22. Let V and W be vector spaces over a field F . A linear transfor-
mation from V to W is a function T : V →W satisfying

(T1) v1, v2 ∈ V implies T (v1 + v2) = T (v1) + T (v2);
(T2) v ∈ V and a ∈ F implies T (av) = aT (v).

An isomorphism is a bijective linear transformation. Two vector spaces are iso-
morphic if there exists an isomorphism between them.

Proposition 4. Two vector spaces over the same field are isomorphic if and only
if they have the same dimension.

In particular, if V is a finite dimensional vector space of dimension n, then V is
isomorphic to Fn.

Let T : Fn → Fm be a linear transformation. The matrix of T is obtained
by putting the destinations of the standard basis vectors into the columns of the
matrix. That is, form the matrix

A = [T (e1)| · · · |T (en)],

where T (ei) if viewed as a column of the matrix. Then for v ∈ Fn, T (v) = w if
and only if Av = w, where in the second equation, v and w are viewed as column
vectors.

In this way, there is a one to one correspondence between the set of linear
transformations T : Fn → Fm, and the set of m× n matrices over F .

The set of linear transformations from Fn to Fn is a ring, with addition being
pointwise addition of functions, and multiplication being composition of functions.
The set of n × n matrices over F is also a ring, under matrix addition and multi-
plication. The correspondence between these to sets as described above is a ring
isomorphism.
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